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MODELING OF NONLINEAR ANTIPLANE STRAIN

OF A CYLINDRICAL BODY

UDC 539.3V. D. Bondar’

Antiplane strain of an elastic cylindrical body is studied with allowance for geometrical and physi-
cal nonlinearities and potential forces. The nonlinear boundary-value problem for two independent
strains is solved. An analytical solution and the corresponding load are obtained for the Rivlin–
Saunders quadratic elastic potential, which models finite elastic strains. The problem for displace-
ments specified on the boundary is solved. The case of weak physical nonlinearity is considered.

Key words: displacement, strains, stresses, potential, nonlinearity, boundary-value problem, an-
alytical solution.

To provide sufficient accuracy in studies of the strain of an elastic solid for the case where strains are finite and
the material behavior does not obey Hooke’s law, to it is necessary to drop the constraints of the linear theory and
consider the strain with allowance for geometrical and physical nonlinearities. In the present paper, this approach
is used to study the nonlinear antiplane strain of an isotropic cylindrical solid under the action of body forces in
the actual-state variables.

For antiplane strain of a cylindrical solid body, the displacement is parallel to the generatrix and does not vary
along the body [1, 2]. We consider this strain using the model of an incompressible nonlinear-elastic solid, which
comprises equilibrium equations, Murnaghan’s law, a relation between the elastic potential and the basis strain
invariants, expressions for the strain components and invariants in terms of displacements, and an incompressibility
condition. In the actual variables x1, x2, and x3 (x1 = x and x2 = y are the transverse coordinates and x3 = z is
the longitudinal coordinate), these relations are written as [3, 4]

Fk +
∂Pkl

∂xl
= 0; (1)

Pkl = −q∗δkl + (δkm − 2Ekm)
∂U

∂Elm
; (2)

U = U(E1, E2, E3); (3)

2Ekl =
∂ul

∂xk
+

∂uk

∂xl
− ∂um

∂xk

∂um

∂xl
; (4)

E1 = Enn, 2E2 = EnnEmm − EnmEmn, E3 = |Ekl|; (5)

2E1 − 4E2 + 8E3 = 0, (6)

where q∗ is the Lagrange multiplier, U is the elastic potential, E1, E2, and E3 are the basis strain invariants, Fk

and uk are the components of the body force and displacement, respectively, Pkl and Ekl are the components of
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the Cauchy stresses and Almansi strains, respectively, and δkl is the Kronecker symbol (the subscripts take values
1, 2, and 3 and the summation is performed over repeated subscripts).

It is assumed that the displacement has only an axial component which is unchanged along the body and
the body forces have a potential V which, like the displacement, is a function of only the transverse coordinates:

u1 = 0, u2 = 0, u3 = w(x, y); (7)

F1 = −∂V

∂x
, F2 = −∂V

∂y
, F3 = −∂V

∂z
= 0, V = V (x, y). (8)

For displacements (7), strains (4) are related to the axial displacement by nonlinear formulas (geometrical nonlin-
earity) and depend on the transverse coordinates:

2E11 = −
(∂w

∂x

)2

, 2E22 = −
(∂w

∂y

)2

, 2E33 = 0,

2E12 = −∂w

∂x

∂w

∂y
, 2E31 =

∂w

∂x
, 2E32 =

∂w

∂y
[Ekl = Ekl(x, y)].

(9)

Eliminating the displacement from (9), we obtain the compatibility equations for antiplane strain:

2E11 = −(2E31)2, 2E22 = −(2E32)2, 2E33 = 0, 2E12 = −2E312E32; (10)

∂E32

∂x
− ∂E31

∂y
= 0. (11)

The final equations (10) express the strains in terms of the independent components E31 and E32, which are related
by the differential equation (11).

The basis strain invariants (5) are expressed in terms of the displacement as

2E1 = −|∇w|2, 4E2 = −|∇w|2, 8E3 = 0. (12)

Invariants (12) are independent of the longitudinal coordinate, nonpositive, representable in terms of the linear
invariant, and satisfy the incompressibility condition (6):

Ek = Ek(x, y), Ek 6 0, Ek = Ek(E1), 2E1 − 4E2 + 8E3 = 0, (13)

i.e., for antiplane strain, the material behaves like an incompressible material, which justifies the use of the incom-
pressible model.

The elastic potential (3) depends only on the first invariants by virtue of the properties of invariants (13),
and the tensor gradient of the potential with respect to strains is a spherical tensor:

U(E1, E2, E3) = U(E1), E1 = Elmδml,

∂E1

∂Elm
= δml,

∂U

∂Elm
= U ′(E1)δml.

(14)

Under conditions (14), Murnaghan’s law (2) is written as a quasilinear stress–strain relation (physical nonlinearity):

Pkl = −qδkl − U ′(E1)2Ekl, q = q∗ − U ′ (15)

(q is the hydrostatic pressure). Below, it is assumed that like the displacement and force potential, the pressure
depends only on the transverse coordinates: q = q(x, y). Hence, it follows that the stresses are functions of these
coordinates (15): Pkl = Pkl(x, y).

According to the strain-compatibility relations (10), the strain components and, hence, the linear strain
invariant are expressed in terms of two independent components E31 and E32. Consequently, the stress compo-
nents (15) can be written as functions of pressure and independent strains:

P11 = −q + U ′(E1)(2E31)2, P22 = −q + U ′(E1)(2E32)2, P33 = −q,
(16)

P12 = U ′(E1)2E312E32, P31 = −U ′(E1)2E31, P32 = −U ′(E1)2E32;

2E1 = 2Enn = −(2E31)2 − (2E32)2. (17)
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For antiplane strain, we show that the pressure can be expressed in terms of the force and elastic potentials and the
independent strains are determined from the nonlinear boundary-value problem. To this end, taking into account
the expressions for forces (8) and stresses (16) and bearing in mind that these quantities depend only on the
transverse coordinates, we write the equilibrium equations (1) in expanded form. With allowance for the third
equilibrium equation

∂P31

∂x
+

∂P32

∂y
= −∂U ′2E31

∂x
− ∂U ′2E32

∂y
= 0 (18)

we write the first two equations as

∂ (P11 − V )
∂x

+
∂P12

∂y
= −∂ (q + V )

∂x
+

∂2E31(U ′2E31)
∂x

+
∂2E31(U ′2E32)

∂y

= −∂ (q + V )
∂x

+ U ′
(
2E31

∂2E31

∂x
+ 2E32

∂2E31

∂y

)
= 0; (19)

∂P12

∂x
+

∂ (P22 − V )
∂y

= −∂ (q + V )
∂y

+
∂2E32(U ′2E32)

∂y
+

∂2E32(U ′2E31)
∂x

= −∂ (q + V )
∂y

+ U ′
(
2E32

∂2E31

∂y
+ 2E31

∂2E32

∂x

)
= 0. (20)

Transforming equalities (19) and (20) with allowance for the strain-compatibility equation (11), we obtain

−∂(q + V )
∂x

+
U ′

2
∂

∂x

[
(2E31)2 + (2E32)2

]
= 0,

−∂(q + V )
∂y

+
U ′

2
∂

∂y

[
(2E31)2 + (2E32)2

]
= 0.

Taking into account the expression for the linear strain invariant (17), we write the second terms in these equations
as

U ′

2
∂

∂x

[
(2E31)2 + (2E32)2

]
= −U ′ ∂E1

∂x
= −∂U

∂x
,

U ′

2
∂

∂y

[
(2E31)2 + (2E32)2

]
= −U ′ ∂E1

∂y
= −∂U

∂y

and finally write the equations as

∂

∂x
(q + V + U) = 0,

∂

∂y
(q + V + U) = 0.

Integration of these equations yields the pressure expressed in terms of the force and elastic potentials with accuracy
to an additive constant:

q = h− V − U, h = const. (21)

It follows from (16) and (21) that the constant can be determined from the specified potentials and the axial
component of the resulting load in the end cross section S of the cylinder

P3 =
∫
S

P33 dS = −
∫
S

q dS = −Sh +
∫
S

(V + U) dS, h =
1
S

( ∫
S

(V + U) dS − P3

)
.

If the resulting axial load vanishes, the constant is equal to the mean value of the potentials in the cross section of
the body

h =
1
S

∫
S

(V + U) dS for P3 = 0, (22)

and the pressure (21) is equal to the deviation of the sum of the potentials from its mean value.
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The equilibrium equation (18) and the strain-compatibility equation (11) form a nonlinear system for the
independent strains determined in the cross section S of the body:

∂ (U ′E31)
∂x

+
∂ (U ′E32)

∂y
= 0,

∂E32

∂x
− ∂E31

∂y
= 0,

(23)

U ′ = U ′(E1), E1 = −2(E2
31 + E2

32).

We write these equations in expanded form

H1 = (U ′ − 4U ′′E2
31)

∂E31

∂x1
− 4U ′′E31E32

(∂E32

∂x1
+

∂E31

∂x2

)
+ (U ′ − 4U ′′E2

32)
∂E32

∂x2
= 0,

H2 =
∂E32

∂x1
− ∂E31

∂x2
= 0

and consider the corresponding characteristic second-order matrix whose elements and determinant are given by [5]

Bkl =
∂Hk

∂ (∂E3l/∂xm)
vm, B = det (Bkl).

In this case, we obtain

B11 = (U ′ − 4U ′′E2
31)v1 − 4U ′′E31E32v2, B22 = v1,

B12 = −4U ′′E31E32v1 + (U ′ − 4U ′′E2
32)v2, B21 = −v1,

B = B11B22 −B12B21 = U ′(v2
1 + v2

2)− 4U ′′(E31v1 + E32v2)2. (24)

From (24) it follows that if the first two derivatives of the elastic potential have different signs, the determinant
is nonvanishing:

B < 0 for U ′ < 0, U ′′ > 0,

B > 0 for U ′ > 0, U ′′ 6 0.
(25)

In these cases, the characteristic equation B = 0 has no real roots and, hence, system (23) is of elliptic type. For
this system, the boundary-value problem with specified boundary strains is well posed.

In (25), the condition B < 0 is satisfied, in particular, for the Rivlin–Saunders quadratic potential used to
model large elastic strains of rubber-like materials [2]:

U = aE2
1 − bE1 + c (a > 0, b > 0, c > 0, E1 < 0),

U ′ = 2aE1 − b < 0, U ′′ = 2a > 0. (26)

(This potential generalizes the Mooney linear potential U = −bE1 + c for the same materials, which corresponds to
Murnaghan’s linear law.)

If forces pk are specified on the boundary L of the cylinder cross section S, the boundary values of the
independent strains can be determined. Using stresses (16) and the outward lateral normal (nk) = (n1, n2, 0), from
the equalities pk = Pklnl we obtain the following nonlinear system for these strains:

p1 = −qn1 + 4U ′E31(E31n1 + E32n2), p2 = −qn2 + 4U ′E32(E31n1 + E32n2),

p3 = −2U ′(E31n1 + E32n2), q = h− V − U, (27)

U = U(E1), U ′ = U ′(E1), E1 = −2(E2
31 + E2

32) on L.

Let us write system (27) in different form. We consider the normal (nk), tangent (tk), and binormal (bk)
unit vectors to the contour L and linear combinations of the independent strains fn and ft that are uniquely related
to the independent strains:

(nk) = (n1, n2, 0), (tk) = (t1, t2, 0) = (−n2, n1, 0), (bk) = (0, 0, 1); (28)
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fn = E31n1 + E32n2, ft = E31t1 + E32t2 = −E31n2 + E32n2; (29)

E31 = fnn1 − ftn2, E32 = fnn2 + ftn1 on L. (30)

By virtue of (21) and (27)–(29), the natural components of the contour load (pn, pt, pb) are given by

pn = pknk = V + U − h + 4U ′f2
n, pt = pktk = 4U ′fnft, pb = pkbk = −2U ′fn,

U = U(E1), U ′ = U ′(E1), E1 = −2(E2
31 + E2

32) = −2(f2
n + f2

t ) on L.

(31)

Consequently, the boundary values of the strains E31 and E32 can be determined in terms of fn and ft using
formulas (30) and the quantities fn and ft are found from the second and third relations in (31):

ft = −pt/(2pb), pb + 2fnU ′(E1) = 0 [E1 = −2f2
n − p2

t /(2p2
b)]. (32)

The first equality in (31) [with allowance for the solution ft, fn of system (32)] is a constraint imposed on the lateral
load to ensure antiplane strain. In formulas (32), the quantity ft is determined only by the load and fn by both
the load and the form of the elastic potential.

For the quadratic potential (26), it follows from (32) that the derivative is given by

U ′ = 2aE1 − b = −b− a(4f2
n + p2

t /p2
b),

and the second equality in (32) is the incomplete cubic equation

f3
n + sfn + t = 0, s =

ap2
t + bp2

b

4ap2
b

, t = − pb

8a

(
T =

s3

27
+

t2

4

)
. (33)

Since T > 0, Eq. (33) has a single real root [6]

fn = J+ + J−, J± = 3
√
−t/2±

√
T . (34)

In the case of weak physical nonlinearity, where the coefficient of the quadratic term in potential (26) is
much smaller than the coefficient of the linear term: k = a/b � 1, expression (34) can be linearized with respect
to this small parameter. To this end, we set a = kb and fn = f0

n + kf1
n in Eq. (33) and retain the free term and

k-linear terms:

8kbp2
b(f

0
n)3 + 2bp2

bf
0
n + 2kb(p2

bf
1
n + p2

t f
0
n)− p3

b = 0 (k = a/b).

Setting the coefficients of k0 and k1 equal to zero, we obtain equations that give the desired approximation

fn =
pb

2b

(
1− k

p4
b + b2p2

t

b2p2
b

)
. (35)

Thus, for the quadratic potential (26), the boundary-value problem for independent strains comprises
Eqs. (23) and boundary conditions (30) whose right sides are determined by formulas (32) and (34) [for weak
physical nonlinearity, relation (34) is replaced by (35)]. The relations of the problem contain no force potential,
and, therefore, the potential body forces affect the pressure but have no effect on the independent strains.

The boundary-value problem for the independent stains formulated in Cartesian coordinates can be written
in polar coordinates r, v, and z (x = r cos v, y = r sin v, and z = z). In these coordinate systems, the normal and
strain components are related by the formulas

n1 = nr cos v − nv sin v, n2 = nr sin v + nv cos v, n3 = nz,

E11 = Err cos2 v + Evv sin2 v − Erv sin 2v, E22 = Err sin2 v + Evv cos2 v + Erv sin 2v,

E33 = Ezz, E31 = Ezr cos v − Ezv sin v, E32 = Ezr sin v + Ezv cos v, (36)

E12 = (Err − Evv) sin v cos v + Erv cos 2v (E2
31 + E2

32 = E2
zr + E2

zv).

With allowance for (10) and (36), cylindrical strain components are expressed in terms of the independent
components Ezr and Ezv as

Err = −2E2
zr, Evv = −2E2

zv, Ezz = 0, Erv = −2EzrEzv. (37)
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In cylindrical coordinates, Murnaghan’s law relates the stress and strain components by formulas similar to (15).
Transformation of these formulas with allowance for relations (37) yields the stress components expressed in terms
of the pressure and independent strains:

Prr = −q + U ′(2Ezr)2, Pvv = −q + U ′(2Ezv)2, Pzz = −q,

Prv = U ′2Ezr2Ezv, Pzr = −U ′2Ezr, Pzv = −U ′2Ezv, (38)

U ′ = U ′(E1), E1 = Err + Evv + Ezz = −2(E2
zr + E2

zv).

The pressure is defined by expression (21). The independent cylindrical strains are defined by Eqs. (23) after
passing to differentiation with respect to polar coordinates using the formulas

∂

∂x
= cos v

∂

∂r
− sin v

r

∂

∂v
,

∂

∂y
= sin v

∂

∂r
+

cos v

r

∂

∂v

and replacing E31 and E32 by Ezr and Ezv, respectively, in accordance with (36). As a result, the equations for the
independent cylindrical strains become

∂ (rU ′Ezr)
∂r

+
∂ (U ′Ezv)

∂v
= 0,

∂ (rEzv)
∂r

− ∂Ezr

∂v
= 0,

U ′ = U ′(E1), E1 = −2(E2
zr + E2

zv).
(39)

It follows from (29) and (36) that the quantities fn and ft in cylindrical coordinates are written as

fn = Ezrnr + Ezvnv, ft = −Ezrnr + Ezvnv. (40)

Inversion of these formulas yields the boundary strains in the form

Ezr = fnnr − ftnv, Ezv = fnnv + ftnr on L, (41)

where fn and ft are determined by the contour load and the elastic potential by formulas (32) and (34) [or (32)
and (35) for weak physical nonlinearity].

Relations (39) and (41) form the boundary-value problem for the independent cylindrical strains. In some
cases, it admits simple analytical solutions.

Let the strains be functions of the polar radius alone: Ezr(r) and Ezv(r). It follows that the derivative of
the elastic potential U ′(r) is also a function of the radius. In this case, Eqs. (39) are simplified:

d (rU ′Ezr)
dr

= 0,
d (rEzv)

dr
= 0.

These equations can be integrated for any form of the potential and their solution contains two arbitrary constants

rEzv = A, rU ′Ezr = B, A = const, B = const, (42)

where only Ezr depends on the form of the potential.
For the elastic potential (26) and its derivative

U ′ = −b(1− 2kE1) = −b[1 + 4k(E2
zr + E2

zv)] (k = a/b) (43)

(b and k are the elastic constants), it follows from (42) and (43) that the strain Ezr should be determined from the
incomplete cubic equation (where B is replaced by the constant C = B/b)

E3
zr + Ezrd + e = 0, d =

r2 + 4kA2

4kr2
, e =

C

4kr

(
E =

d3

27
+

e2

4
> 0

)
, (44)

which has a unique real solution [6]. Thus, the independent strains are given by

Ezv = A/r, Ezr = I+ + I−, I± = 3
√
−e/2±

√
E. (45)

For weak physical nonlinearity (k � 1), the quantity Ezr in (45) can be determined in a k-linear approxima-
tion from the approximate equation (44) by equating the coefficients of the zeroth and first powers of the parameter
to zero:

Ezr = E0
zr + kE1

zr, 4kr2(E0
zr)

3 + (r2 + 4kA2)(E0
zr + kE1

zr) + Cr = 0.
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As a result, the strains (45) are approximately equal to

Ezv =
A

r
, Ezr = −C

r

(
1− 4k

A2 + C2

r2

)
. (46)

We apply the solution (46) to the problem of the relative equilibrium of a hollow cylinder r1 6 r 6 r2 of
density ρ which rotates at angular velocity ω in the absence of the resulting axial end load P3 = 0 under the action
of the body forces (centrifugal inertial forces) F1 = ρω2x and F2 = ρω2y and determine the corresponding pressure,
stresses, and lateral load in the approximation considered.

In this case, the elastic and force potentials are functions of the polar radius:

U = c + 2b
A2 + C2

r2

(
1 + 2k

A2 − 3C2

r2

)
, U ′ = −b

(
1 + 4k

A2 + C2

r2

)
, V = e− ρω2

2
r2. (47)

Here e = const and, according to (22), the constant h in (21) calculated for P3 = 0, c = 0, and e = 0 (which
corresponds to U = 0 for E1 = 0 and V = 0 for r = 0) is given by

h = 2b(A2 + C2)
( log (r2

2/r2
1)

r2
2 − r2

1

+ 2k
A2 − 3C2

r2
1r

2
2

)
− ρω2

4
(r2

1 + r2
2).

In this case, the pressure (21) becomes

q = h +
ρω2

2
r2 − 2b

A2 + C2

r2

(
1 + 2k

A2 − 3C2

r2

)
. (48)

In the problem considered, it follows from (48) that the cylindrical stress components (38) depend only on
the polar radius:

Prr = −
(
h +

ρω2

2
r2

)
+

2b

r2

(
A2 − C2 + 2k

(A2 + C2)2

r2

)
, Prv = AC

4b

r2
,

Pvv = −
(
h +

ρω2

2
r2

)
+

2b

r2

(
A2 − C2 − 6k

(A2 + C2)2

r2

)
, Pzr = −C

2b

r
, (49)

Pzz = −
(
h +

ρω2

2
r2

)
+

2b

r2
(A2 + C2)

(
1 + 2k

A2 − 3C2

r2

)
, Pzv = A

2b

r

(
1 + 4k

A2 + C2

r2

)
,

and, hence, they are constant on the lateral boundary of the circular tube. In addition, formulas (49) imply that
the body forces affect tensile and compressive stresses and have no effect on shear stresses. In this case, the physical
nonlinearity (k 6= 0) has an effect on stresses of both the first and second kinds.

The outward normal to the tube is directed along the radius, and, therefore, the boundary quantities (40)
have the form

(n(1)
r , n(1)

v , n(1)
z ) = (−1, 0, 0), r = r1, (n(2)

r , n(2)
v , n(3)

z ) = (1, 0, 0), r = r2,

f (1)
n = −E(1)

zr =
C

r1

(
1− 4k

A2 + C2

r2
1

)
, f

(1)
t = −E(1)

zv = −A

r1
for r = r1,

f (2)
n = E(2)

zr = −C

r2

(
1− 4k

A2 + C2

r2
2

)
, f

(2)
t = E(2)

zv =
A

r2
for r = r2.

These strains and the derivative of the elastic potential (47) correspond to the lateral load (31)

p
(1)
b =

2bC

r1
, p

(1)
t =

4bAC

r2
1

for r = r1,

p
(2)
b = −2bC

r2
, p

(2)
t =

4bAC

r2
2

for r = r2,

(50)

which is insensitive to the nonlinearity of the elastic potential in the case considered. The load components are
related by the formulas

p
(1)
b /p

(2)
b = −r2/r1, p

(1)
t /p

(2)
t = r2

2/r2
1,
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which imply that the load takes an independent value on one boundary, for example, the internal boundary. Using
this load, the integration constants A and C are expressed as

A = r1p
(1)
t /(2p

(1)
b ), C = r1p

(1)
b /(2b). (51)

Thus, the axisymmetric strain (46) of a hollow cylinder corresponds to the stress field (49), which depends on the
polar radius, and the lateral load (50), whose axial and circumferential components are inversely related to the first
and second powers of the radius. The integration constants in these formulas are defined by equalities (51).

In the case where displacements are specified on the boundary of the body, it is convenient to solve the
problem for displacements. In [17], the problem was studied in Cartesian coordinates; we consider it in polar
variables.

Using the expressions for the Cartesian strain components in terms of the displacement gradients (9) and
the relations between the strain components in Cartesian and polar coordinates (36), we obtain

2Ezr = 2E31 cos v + 2E32 sin v =
∂w

∂x
cos v +

∂w

∂y
sin v,

2Ezv = −2E31 sin v + 2E32 cos v = −∂w

∂x
sin v +

∂w

∂y
cos v.

Passing to differentiation with respect to polar coordinates according to the formulas
∂w

∂x
=

∂w

∂r
cos v − ∂w

∂v

sin v

r
,

∂w

∂y
=

∂w

∂r
sin v +

∂w

∂v

cos v

r
,

we express the cylindrical strain components in terms of the displacement gradients:

Ezr =
1
2

∂w

∂r
, Ezv =

1
2r

∂w

∂v
. (52)

After substitution of (52) into the strains relations (39), the second relation becomes an identity and the
first relation becomes the desired equation for the displacements in polar coordinates:

∂

∂r

(
rU ′ ∂w

∂r

)
+

∂

∂v

(1
r

U ′ ∂w

∂v

)
= 0,

U ′ = U ′(E1), E1 = −1
2

[(∂w

∂r

)2

+
1
r2

(∂w

∂v

)2]
.

(53)

Let us obtain an axisymmetric solution of this equation. In this case, the displacement depends only on the
polar radius. Hence,

w = w(t), t = r2,
∂w

∂r
= 2r

dw

dt
,

∂w

∂v
= 0,

E1 = −2t
(dw

dt

)2

, U ′ = U ′(E1) = U ′(t),
∂U ′

∂v
= 0

and Eq. (53) becomes

d

dt

(
tU ′ dw

dt

)
= 0.

After integration, we obtain the integral

tU ′ dw

dt
= B, B = const. (54)

Use of the quadratic elastic potential (26) and replacement of the constant B by C

U ′ = −b(1− 2kE1) = −b
[
1 + 4kt

(dw

dt

)2]
, k =

a

b
, B = −bC = const

reduces integral (54) to the incomplete cubic equation for wt(dw

dt

)3

+ u
dw

dt
+ s = 0, u =

1
4kt

, s = − C

4kt2

(
S =

u3

27
+

s2

4
> 0

)
, (55)

which has the unique real solution [6]
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dw

dt
= N+(t, C) + N−(t, C), N±(t, C) = 3

√
−s/2±

√
S.

Integration of this relation yields the displacement

w =
∫

(N+(t, C) + N−(t, C)) dt + D, C = const, D = const. (56)

The constants appearing in (56) are determined from the boundary displacements specified on the lateral
surfaces of the body. In the particular case of weakly nonlinear elastic potential (k � 1), the derivative of the
displacement can be obtained from the approximate equation (55)

wt = w0
t + kw1

t , 4kt2(w0
t )3 + t(w0

t + kw1
t )− C = 0

in the approximate form

dw

dt
=

C

t

(
1− 4k

C2

t

)
.

Integrating this equation, we obtain the displacement

w = D + C ln t +
4kC3

t
, C = const, D = const. (57)

We apply solution (57) to the problem of deformation of a circular cylindrical tube t1 6 t 6 t2 on whose
lateral surfaces constant displacements are specified:

w = w1 for t = t1, w = w2 for t = t2. (58)

With allowance for (57), conditions (58) reduce to the following equations for the constants C and D:

w1 = D + C ln t1 + 4kC3/t1, w2 = D + C ln t2 + 4kC3/t2.

Summation and subtraction of these equalities yields the following relations, the first of which defines D in terms
of C and the second is a cubic equation for C:

D =
w1 + w2

2
− C

2
ln (t1t2)− 2kC3 t1 + t2

t1t2
,

4k
t2 − t1
t1t2

C3 − C ln
t2
t1

+ w2 − w1 = 0.

In the k-linear approximation, the constants have the values

C =
w2 − w1

ln (t2/t1)

(
1 + 4k

t2 − t1
t1t2

(w2 − w1)2

ln3(t2/t1)

)
, t = r2,

D =
w1 + w2

2
− w2 − w1

2
ln (t1t2)
ln (t2/t1)

− 2k
t1 + t2
t1t2

(w2 − w1)3

ln3(t2/t1)

(
1 +

t2 − t1
t2 + t1

ln (t1t2)
ln (t2/t1)

)
.

If the displacement depends on both polar coordinates, the elastic potential is quadratic, and k � 1, then the
approximation linear in the small parameter w = w0 + kw1 can be obtained from the approximate equation (53)

∂

∂r

[
r

∂w0

∂r
+ kr

(∂w1

∂r
− 2E0

1

∂w0

∂r

)]
+

∂

∂v

[1
r

∂w0

∂v
+

k

r

(∂w1

∂v
− 2E0

1

∂w0

∂v

)]
= 0,

2E0
1 = −

(∂w0

∂r

)2

−
(1

r

∂w0

∂v

)2

.

Equating the coefficients of k0 and k1 to zero, after some simplifications we obtain the following equations for the
displacement components

r
∂

∂r

(
r

∂w0

∂r

)
+

∂2w0

∂v2
= 0; (59)

r
∂

∂r

(
r

∂w1

∂r

)
+

∂2w1

∂v2
= r2 ∂w0

∂r

∂2E0
1

∂r
+

∂w0

∂v

∂2E0
1

∂v
, (60)
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which are homogeneous and inhomogeneous harmonic equations, respectively. Equation (59) has the solution

w0 = r sin (v + f), f = const,

which corresponds to 2E0
1 = −1. As a result, Eq. (60) becomes a homogeneous equation, which, in particular, has

the solution

w1 = gr sin (v + f), g = const, f = const.

Thus, the approximate solution of Eq. (53) containing two parameters has the form

w = w0 + kw1 = (1 + kg)r sin (v + f) (g = const, f = const). (61)

The first term on the right side in (61) (which does not contain the parameter k) corresponds to the contribution
of the linear elastic potential to the displacement and the second term accounts for the contribution of physical
nonlinearity; for kg ≈ 1, this contribution is comparable to that of the linear potential.

In the problem of a cylindrical tube r1 6 r 6 r2, solution (61) corresponds to boundary displacements that
vary according to the sinusoidal law

w1 = (1 + kg)r1 sin (v + f), r = r1, w2 = (1 + kg)r2 sin (v + f), r = r2.

The boundary displacements are proportional to the radii: w1/w2 = r1/r2; therefore, it suffices to examine them
on one of the boundaries, for example, the internal boundary. On this boundary, the constant g determines the
displacement amplitude w∗

1 and the constant f determines the polar angle v∗ of its maximum: r1(1 + kg) = w∗
1

and v∗ + f = π/2.
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